657 research outputs found

    Optimizing the ensemble for equilibration in broad-histogram Monte Carlo simulations

    Full text link
    We present an adaptive algorithm which optimizes the statistical-mechanical ensemble in a generalized broad-histogram Monte Carlo simulation to maximize the system's rate of round trips in total energy. The scaling of the mean round-trip time from the ground state to the maximum entropy state for this local-update method is found to be O([N log N]^2) for both the ferromagnetic and the fully frustrated 2D Ising model with N spins. Our new algorithm thereby substantially outperforms flat-histogram methods such as the Wang-Landau algorithm.Comment: 6 pages, 5 figure

    Dynamics of the Wang-Landau algorithm and complexity of rare events for the three-dimensional bimodal Ising spin glass

    Full text link
    We investigate the performance of flat-histogram methods based on a multicanonical ensemble and the Wang-Landau algorithm for the three-dimensional +/- J spin glass by measuring round-trip times in the energy range between the zero-temperature ground state and the state of highest energy. Strong sample-to-sample variations are found for fixed system size and the distribution of round-trip times follows a fat-tailed Frechet extremal value distribution. Rare events in the fat tails of these distributions corresponding to extremely slowly equilibrating spin glass realizations dominate the calculations of statistical averages. While the typical round-trip time scales exponential as expected for this NP-hard problem, we find that the average round-trip time is no longer well-defined for systems with N >= 8^3 spins. We relate the round-trip times for multicanonical sampling to intrinsic properties of the energy landscape and compare with the numerical effort needed by the genetic Cluster-Exact Approximation to calculate the exact ground state energies. For systems with N >= 8^3 spins the simulation of these rare events becomes increasingly hard. For N >= 14^3 there are samples where the Wang-Landau algorithm fails to find the true ground state within reasonable simulation times. We expect similar behavior for other algorithms based on multicanonical sampling.Comment: 9 pages, 12 figure

    Wang-Landau sampling for quantum systems: algorithms to overcome tunneling problems and calculate the free energy

    Full text link
    We present a generalization of the classical Wang-Landau algorithm [Phys. Rev. Lett. 86, 2050 (2001)] to quantum systems. The algorithm proceeds by stochastically evaluating the coefficients of a high temperature series expansion or a finite temperature perturbation expansion to arbitrary order. Similar to their classical counterpart, the algorithms are efficient at thermal and quantum phase transitions, greatly reducing the tunneling problem at first order phase transitions, and allow the direct calculation of the free energy and entropy.Comment: Added a plot showing the efficiency at first order phase transition

    Performance Limitations of Flat Histogram Methods and Optimality of Wang-Landau Sampling

    Full text link
    We determine the optimal scaling of local-update flat-histogram methods with system size by using a perfect flat-histogram scheme based on the exact density of states of 2D Ising models.The typical tunneling time needed to sample the entire bandwidth does not scale with the number of spins N as the minimal N^2 of an unbiased random walk in energy space. While the scaling is power law for the ferromagnetic and fully frustrated Ising model, for the +/- J nearest-neighbor spin glass the distribution of tunneling times is governed by a fat-tailed Frechet extremal value distribution that obeys exponential scaling. We find that the Wang-Landau algorithm shows the same scaling as the perfect scheme and is thus optimal.Comment: 5 pages, 6 figure

    Optimized broad-histogram simulations for strong first-order phase transitions: Droplet transitions in the large-Q Potts model

    Full text link
    The numerical simulation of strongly first-order phase transitions has remained a notoriously difficult problem even for classical systems due to the exponentially suppressed (thermal) equilibration in the vicinity of such a transition. In the absence of efficient update techniques, a common approach to improve equilibration in Monte Carlo simulations is to broaden the sampled statistical ensemble beyond the bimodal distribution of the canonical ensemble. Here we show how a recently developed feedback algorithm can systematically optimize such broad-histogram ensembles and significantly speed up equilibration in comparison with other extended ensemble techniques such as flat-histogram, multicanonical or Wang-Landau sampling. As a prototypical example of a strong first-order transition we simulate the two-dimensional Potts model with up to Q=250 different states on large systems. The optimized histogram develops a distinct multipeak structure, thereby resolving entropic barriers and their associated phase transitions in the phase coexistence region such as droplet nucleation and annihilation or droplet-strip transitions for systems with periodic boundary conditions. We characterize the efficiency of the optimized histogram sampling by measuring round-trip times tau(N,Q) across the phase transition for samples of size N spins. While we find power-law scaling of tau vs. N for small Q \lesssim 50 and N \lesssim 40^2, we observe a crossover to exponential scaling for larger Q. These results demonstrate that despite the ensemble optimization broad-histogram simulations cannot fully eliminate the supercritical slowing down at strongly first-order transitions.Comment: 11 pages, 12 figure

    Quantitative Determination of Temperature in the Approach to Magnetic Order of Ultracold Fermions in an Optical Lattice

    Get PDF
    We perform a quantitative simulation of the repulsive Fermi-Hubbard model using an ultracold gas trapped in an optical lattice. The entropy of the system is determined by comparing accurate measurements of the equilibrium double occupancy with theoretical calculations over a wide range of parameters. We demonstrate the applicability of both high-temperature series and dynamical mean-field theory to obtain quantitative agreement with the experimental data. The reliability of the entropy determination is confirmed by a comprehensive analysis of all systematic errors. In the center of the Mott insulating cloud we obtain an entropy per atom as low as 0.77k(B) which is about twice as large as the entropy at the Neel transition. The corresponding temperature depends on the atom number and for small fillings reaches values on the order of the tunneling energy

    Properties and Detection of Spin Nematic Order in Strongly Correlated Electron Systems

    Full text link
    A spin nematic is a state which breaks spin SU(2) symmetry while preserving translational and time reversal symmetries. Spin nematic order can arise naturally from charge fluctuations of a spin stripe state. Focusing on the possible existence of such a state in strongly correlated electron systems, we build a nematic wave function starting from a t-J type model. The nematic is a spin-two operator, and therefore does not couple directly to neutrons. However, we show that neutron scattering and Knight shift experiments can detect the spin anisotropy of electrons moving in a nematic background. We find the mean field phase diagram for the nematic taking into account spin-orbit effects.Comment: 13 pages, 11 figures. (v2) References adde

    Transition matrix Monte Carlo method for quantum systems

    Full text link
    We propose an efficient method for Monte Carlo simulation of quantum lattice models. Unlike most other quantum Monte Carlo methods, a single run of the proposed method yields the free energy and the entropy with high precision for the whole range of temperature. The method is based on several recent findings in Monte Carlo techniques, such as the loop algorithm and the transition matrix Monte Carlo method. In particular, we derive an exact relation between the DOS and the expectation value of the transition probability for quantum systems, which turns out to be useful in reducing the statistical errors in various estimates.Comment: 6 pages, 4 figure

    The Magnetization of Cu_2(C_5H_{12}N_2)_2Cl_4 : A Heisenberg Spin Ladder System

    Full text link
    We study the magnetization of a Heisenberg spin ladder using exact diagonalization techniques, finding three distinct magnetic phases. We consider the results in relation to the experimental behaviour of the new copper compound Cu_2(C_5H_{12}N_2)_2Cl_4 and deduce that the compound is well described by such a model with a ratio of `chain' to `rung' bond strengths (J/J^\prime) of the order of 0.2, consistent with results from the magnetic susceptibility. The effects of temperature, spin impurities and additional diagonal bonds are presented and we give evidence that these diagonal bonds are indeed of a ferromagnetic nature.Comment: Latex file (4 pages), related figures (encapsulated postscript) appende
    corecore